From 1 - 10 / 37
  • MEOP (Marine Mammals Exploring the Oceans Pole to Pole) is a consortium of international researchers dedicated to sharing animal-derived data and knowledge about the polar oceans. The Southern Ocean plays a fundamental role in regulating the global climate. This ocean also contains a rich and highly productive ecosystem, potentially vulnerable to climate change. Very large national and international efforts are directed towards the modeling of physical oceanographic processes to predict the response of the Southern Ocean to global climate change and the role played by the large-scale ocean climate processes. However, these modeling efforts are greatly limited by the lack of in situ measurements, especially at high latitudes and during winter months. The standard data that are needed to study ocean circulation are vertical profiles of temperature and salinity, from which we can deduce the density of seawater. These are collected with CTD (Conductivity-Temperature-Depth) sensors that are usually deployed on research vessels or, more recently, on autonomous Argo profilers. The use of conventional research vessels to collect these data is very expensive, and does not guarantee access to areas where sea ice is found at the surface of the ocean during the winter months. A recent alternative is the use of autonomous Argo floats. However, this technology is not easy to use in glaciated areas. In this context, the collection of hydrographic profiles from CTDs mounted on marine mammals is very advantageous. The choice of species, gender or age can be done to selectively obtain data in particularly under-sampled areas such as under the sea ice or on continental shelves. Among marine mammals, elephant seals are particularly interesting. Indeed, they have the particularity to continuously dive to great depths (590 ± 200 m, with maxima around 2000 m) for long durations (average length of a dive 25 ± 15 min, maximum 80 min). A Conductivity-Temperature-Depth Satellite Relay Data Logger (CTD-SRDLs) has been developed in the early 2000s to sample temperature and salinity vertical profiles during marine mammal dives (Boehme et al. 2009, Fedak 2013). The CTD-SRDL is attached to the seal on land, then it records hydrographic profiles during its foraging trips, sending the data by satellite ARGOS whenever the seal goes back to the surface.While the principle intent of seal instrumentation was to improve understanding of seal foraging strategies (Biuw et al., 2007), it has also provided as a by-product a viable and cost-effective method of sampling hydrographic properties in many regions of the Southern Ocean (Charrassin et al., 2008; Roquet et al., 2013). For more details, please visit https://www.meop.net/database/data-processing-and-validation.html.

  • Ice classes are assigned from atmospherically corrected SSMIS and AMSR-2 brightness temperatures and ASCAT backscatter values, using a Bayesian approach. Both the sea ice edge product and the sea ice type product are classification products differing between different ice classes. Sea ice type differs between First-year ice and Multiyear ice which are defined from target regions of known ice types. The product series is operational since 2005.

  • Ice concentration is computed from atmospherically corrected SSMIS brightness temperatures, using a combination of state-of-the-art algorithms. The product series is operational since 2005. This product is complementary to the AMSR-2 global sea ice concentration product (OSI-408 series).

  • Categories  

    Presented is a long-term dataset consisting of 755 images acquired by using a non-invasive, autonomous imaging device and encompassing both the Antarctic daylight and dark periods, including the corresponding transition phases. All images have the same field of view showing the benthic fauna and part of the water column above, including fishes present in the monitored period. All the images are manually annotated after a visual inspection performed by expert biologists. The extended monitoring period and the annotated images make the dataset a valuable benchmark suitable for studying the dynamics of the long-term Antarctic underwater fauna as well as for developing and testing algorithms for automated image analysis focused on the recognition and classification of the Antarctic organisms and the automated analysis of their long-term dynamics.

  • Argo is an international program aimed to collect water temperature and salinity and in some cases also ocean biology/chemistry in the upper 2000 m from the ocean surface. It consists of an array of 3,000 free-drifting profiling floats distribute globally. At present (2024) Argo is collecting 13,000 data profiles each month (400+ a day) distributed over the global oceans at an average of 3-degree spacing. The standard Argo float mission is a 10-day cycle,: from ocean surface the float sinks to a drift depth of 1000 meters for about 9 days and then sinks to its profile depth of 2000 meters before slowly rising to the surface while measuring conductivity, temperature and pressure. This cycle repeats until the float dies usually 4 – 5 years later. All data collected by Argo floats are publicly available in near real-time via the Global Data Assembly Centers (GDACs) in Brest (France) and Monterey (California) after an automated quality control (QC), and in scientifically quality controlled form, delayed mode data, via the GDACs within six months of collection. These data are temperature (TEMP) profiles measured by the international Argo program in the Southern Ocean. These data were collected and made freely available by the International Argo Program and the national programs that contribute to it. The Argo Program is part of the Global Ocean Observing System. Visit https://argo.ucsd.edu/ and https://www.ocean-ops.org for more information.

  • The European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) is international, innovative and interdisciplinary, and a champion of open data in the life sciences. The EMBL-EBI captures and presents globally comprehensive sequence data as part of the International Nucleotide Sequence Database Collaboration. Data provided to GBIF include geotagged environmental sequences with user-provided taxonomic identifications. This dataset contains INSDC sequences associated with environmental sample identifiers. The dataset is prepared periodically using the public ENA API (https://www.ebi.ac.uk/ena/portal/api/) by querying data with the search parameters: environmental_sample=True & host="" EMBL-EBI also publishes other records in separate datasets (https://www.gbif.org/publisher/ada9d123-ddb4-467d-8891-806ea8d94230). The data was then processed as follows: 1. Human sequences were excluded. 2. For non-CONTIG records, the sample accession number (when available) along with the scientific name were used to identify sequence records corresponding to the same individuals (or group of organism of the same species in the same sample). Only one record was kept for each scientific name/sample accession number. 3. Contigs and whole genome shotgun (WGS) records were added individually. 4. The records that were missing some information were excluded. Only records associated with a specimen voucher or records containing both a location AND a date were kept. 5. The records associated with the same vouchers are aggregated together. 6. A lot of records left corresponded to individual sequences or reads corresponding to the same organisms. In practise, these were "duplicate" occurrence records that weren't filtered out in STEP 2 because the sample accession sample was missing. To identify those potential duplicates, we grouped all the remaining records by scientific_name, collection_date, location, country, identified_by, collected_by and sample_accession (when available). Then we excluded the groups that contained more than 50 records. The rationale behind the choice of threshold is explained here: Deduplication v2 gbif/embl-adapter#10 (comment) 7. To improve the matching of the EBI scientific name to the GBIF backbone taxonomy, we incorporated the ENA taxonomic information. The kingdom, Phylum, Class, Order, Family, and genus were obtained from the ENA taxonomy checklist available here: http://ftp.ebi.ac.uk/pub/databases/ena/taxonomy/sdwca.zip More information available here: https://github.com/gbif/embl-adapter#readme You can find the mapping used to format the EMBL data to Darwin Core Archive here: https://github.com/gbif/embl-adapter/blob/master/DATAMAPPING.md

  • Categories  

    This data package contains a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the 2016 version of the GLODAP version 2 data product, which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1°  ×  1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and calcium carbonate (CaCO3) saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method (Troupin et al., 2012). Error fields are calculated using the clever poor mans error calculation method in DIVA (Beckers et al., 2014). Climatologies were created for 33 standard depth levels from surface to 5500 meters. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all variables, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. These data are specifically the salinity (PSAL) variables. For the full dataset, please visit https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0286118.html.

  • The NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature (OISST) is a long term Climate Data Record that incorporates observations from different platforms (satellites, ships, buoys and Argo floats) into a regular global grid. The dataset is interpolated to fill gaps on the grid and create a spatially complete map of sea surface temperature. Satellite and ship observations are referenced to buoys to compensate for platform differences and sensor biases. OISST belongs to a family of products that are sometimes referred to as "Reynolds SST" for Richard W. Reynolds, a NOAA scientist who worked to improve the accuracy of the SST analyses by optimizing the advantages of in situ (ship and buoy) and satellite data. Older Reynolds SST products have been retired, except for the 1° weekly OISST. The dataset was developed using a methodology that includes bias adjustment of satellite and ship observations (referenced to buoys) to compensate for platform differences and sensor biases. This proved critical during the Mt. Pinatubo eruption in 1991, when the widespread presence of volcanic aerosols resulted in infrared satellite temperatures that were much cooler than actual ocean temperatures (Reynolds 1993).

  • MEOP (Marine Mammals Exploring the Oceans Pole to Pole) is a consortium of international researchers dedicated to sharing animal-derived data and knowledge about the polar oceans. The Southern Ocean plays a fundamental role in regulating the global climate. This ocean also contains a rich and highly productive ecosystem, potentially vulnerable to climate change. Very large national and international efforts are directed towards the modeling of physical oceanographic processes to predict the response of the Southern Ocean to global climate change and the role played by the large-scale ocean climate processes. However, these modeling efforts are greatly limited by the lack of in situ measurements, especially at high latitudes and during winter months. The standard data that are needed to study ocean circulation are vertical profiles of temperature and salinity, from which we can deduce the density of seawater. These are collected with CTD (Conductivity-Temperature-Depth) sensors that are usually deployed on research vessels or, more recently, on autonomous Argo profilers. The use of conventional research vessels to collect these data is very expensive, and does not guarantee access to areas where sea ice is found at the surface of the ocean during the winter months. A recent alternative is the use of autonomous Argo floats. However, this technology is not easy to use in glaciated areas. In this context, the collection of hydrographic profiles from CTDs mounted on marine mammals is very advantageous. The choice of species, gender or age can be done to selectively obtain data in particularly under-sampled areas such as under the sea ice or on continental shelves. Among marine mammals, elephant seals are particularly interesting. Indeed, they have the particularity to continuously dive to great depths (590 ± 200 m, with maxima around 2000 m) for long durations (average length of a dive 25 ± 15 min, maximum 80 min). A Conductivity-Temperature-Depth Satellite Relay Data Logger (CTD-SRDLs) has been developed in the early 2000s to sample temperature and salinity vertical profiles during marine mammal dives (Boehme et al. 2009, Fedak 2013). The CTD-SRDL is attached to the seal on land, then it records hydrographic profiles during its foraging trips, sending the data by satellite ARGOS whenever the seal goes back to the surface.While the principle intent of seal instrumentation was to improve understanding of seal foraging strategies (Biuw et al., 2007), it has also provided as a by-product a viable and cost-effective method of sampling hydrographic properties in many regions of the Southern Ocean (Charrassin et al., 2008; Roquet et al., 2013). For more details, please visit https://www.meop.net/database/data-processing-and-validation.html.

  • The COriolis Ocean Dataset for Reanalysis (hereafter "CORA") product is a global dataset of in situ temperature and salinity measurements. The CORA observations comes from many different sources collected by Coriolis data centre in collaboration with the In Situ Thematic Centre of the Copernicus Marine Service (CMEMS INSTAC). The observation integrated in the CORA product have been acquired both by autonomous platforms (Argo profilers, fixed moorings , gliders , drifters, sea mammals) , research or opportunity vessels (CTDs, XBTs, ferrybox). From the near real time CMEMS In Situ Thematic Centre product validated on a daily and weekly basis for forecasting purposes, a scientifically validated product is created. It s a "reference product" updated on a yearly basis since 2007. This product has been controlled using an objective analysis (statistical tests) method and a visual quality control (QC). This QC procedure has been developed with the main objective to improve the quality of the dataset to the level required by the climate application and the physical ocean re-analysis activities. It provides T and S weekly gridded fields and individual profiles both on their original level with QC flags and interpolated level. The measured parameters, depending on the data source, are : temperature, salinity. The reference level of measurements is immersion (in meters) or pressure (in decibars). CORA contains historical profiles extracted from the EN.4 global T&S dataset, World Ocean Atlas, SeaDataNet, ICES and other data aggregators. These data refer to the salinity (PSAL) measurements specifically.